Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells.

نویسندگان

  • A Ouiddir
  • C Planès
  • I Fernandes
  • A VanHesse
  • C Clerici
چکیده

Alveolar epithelial cells (AEC) are directly exposed to high alveolar O(2) tension. Many pulmonary disorders are associated with a decrease in alveolar O(2) tension and AEC need to develop adaptative mechanisms to cope with O(2) deprivation. Under hypoxia, because of inhibition of oxidative phosphorylation, adenosine triphosphate supply is dependent on the ability of cells to increase anaerobic glycolysis. In this study we show that under hypoxia, primary rat AEC maintained their energy status close to that of normoxic cells through increasing anaerobic glycolysis. We therefore examined the effect of hypoxia on glucose transport and evaluated the mechanisms of this regulation. Hypoxia induced a stimulation of Na-independent glucose transport, as shown by the increase in 2-deoxy-D-glucose (DG) uptake. This increase was dependent on time and O(2) concentration: maximal at 0% O(2) for 18 h, and reversible after hypoxic cells were allowed to recover in normoxia. Concomitantly, exposure of AEC to hypoxia (18 h 0% O(2)) induced a 3-fold increase of glucose transporter GLUT1 at both protein and messenger RNA (mRNA) levels. To determine whether the increase in GLUT1 mRNA level was dependent on O(2) deprivation per se or resulted from decrease of oxidative phosphorylation, we examined in normoxic cells the effects of cobalt chloride and Na azide, respectively. Cobalt chloride (100 microM) and Na azide (1 mM) increased both mRNA levels and DG uptake, mimicking the effect of hypoxia. Electrophoretic mobility shift assays revealed a hypoxic and a cobalt chloride induction of a hypoxia-inducible factor (HIF) that bound to the sequence of nucleotides, corresponding to a hypoxia-inducible element upstream of the GLUT1 gene. AEC also expressed this factor under nonhypoxic conditions. Together, our results demonstrate that AEC increased glucose transport in response to hypoxia by regulating GLUT1 gene-encoding protein. This regulation likely occurred at the transcriptional level through the activation of an HIF, the nature of which remains to be elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUT1 expression in retinal capillary endothelial cells.

Elevation of intracellular glucose within retinal vascular cells is believed to be an important causal factor in the development of diabetic retinopathy. The intracellular glucose concentration is regulated by both the rate of glucose metabolism and glucose transport. Because retinal hypoxia often precedes proliferative diabetic retinopathy, we have studied the regulation of the glucose transpo...

متن کامل

Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers

Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glia...

متن کامل

GLUT1 activity contributes to the impairment of PEDF secretion by the RPE

PURPOSE In this study, we aimed to understand whether glucose transporter 1 (GLUT1) activity affects the secretion capacity of antiangiogenic factor pigment epithelium-derived factor (PEDF) by the RPE cells, thus explaining the reduction in PEDF levels observed in patients with diabetic retinopathy (DR). METHODS Analysis of GLUT1 expression, localization, and function was performed in vitro i...

متن کامل

Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells.

Glucose transporter 1 (GLUT1) plays an important role in the transport of glucose in the placenta. During early pregnancy, placentation occurs in a relatively hypoxic environment that is essential for appropriate embryonic development, and GLUT1 expression is enhanced in response to oxygen deficiency in the placenta. Hypoxia-inducible factor-1 (HIF-1)alpha is involved in the induction of GLUT1 ...

متن کامل

Hypoxia increases glucose transporter 1 expression in bovine corpus luteum at the early luteal stage

A major role of the corpus luteum (CL) is to produce progesterone (P4). The CL has immature vasculature shortly after ovulation, suggesting it exists under hypoxic conditions. Hypoxia-inducible factor-1 (HIF1) induces the expression of glucose transporter 1 (GLUT1). To clarify the physiological roles of GLUT1 in bovine CL, we examined GLUT1 mRNA expression in the CL under hypoxic conditions by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 1999